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Abstract— The stress intensity factors (SIFs) of a semi-mfinite crack in front of a thermally and
elastically mismatched. circular heterogeneity are studied buased on a singular integral equation
technique and on a self-consistent method. It is shown that the solution resulting from the self-
consistent method is equivalent to the one from the Cauchy-type singular integral equation if the
kernel function in the integral equation is completely ignored. The self-consistent solution is then
compared with the numerical solution of the integral equation for the full range of elastic mismatch
using various discretization techniques. For Dundurs’ parameters within the range [«| < 0.6 and
B = x-4. the SIFs predicted by the self-consistent formula agree within 7% or better when compared
with the numerical results. provided that the crack up is not situated extremely close to the
heterogeneity.

Finally. it is analyzed how the convergence of the STFs of crack tips which are extremely close
to the heterogeneity is influenced by the choice of discretization scheme : to generate computer codes
which are easy to implement. time-efficient and numerically accurate. it is advantageous to use
techniques which operate on a finite interval [ - 1. + 1] (1.e. Gauss-Chebyshev. Lobatto-Chebyshev)
as compared with those which cover the positive v-axis [0. ) {i.e. Radau-Chebyshev or Gauss—
Hermite). Consequently. it is advisuble to map the semi-infinite crack into a crack of finite size by
using suitable transforms. [t will be shown that among the discretizations for a finite interval the
fastest to converge are those which explicitly use the end points - 1 and + 1 (Lobatto--Chebyshev)
followed closely by polvnomial extrapolation of discrete solution data for (- 1. 4+ 1) into the crack
ups.

I FORMULATION OF THE PROBLEM

Consider the plane elastic problem shown in Fig. I. An elastic matrix contains a single
heterogeneity. i.e. a fiber or inclusion. of radius R. together with a semi-infinite crack in the
radial direction. in the mid-plane of the fiber. at a distance ¢. The elastic constants of the
matrix and of the fiber are denoted by (y,. v} and (je.. k). respectively, where y; is the shear

khelishvili’s constant. v, being Poisson’s ratio and /= 1. 2. The corresponding thermal
expansion coeflicients of the matrix and of the fiber material are denoted by af and «f,
respectively.

The goal of this paper is to study the influence of the elastic and thermal mismatch on
the stress concentration. K. of the semi-infinite crack. To this end an analytical formula
for the stress intensity factor (SIF) will be presented. with the assumption of small elastic
mismatch. This formula tollows either ftom a self-consistent method, which was used by
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Stuttgart. Germany.
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Fig 1. Geometry of the semi-mfinite crack in front of an inclusion.

Kachanov e al. (1990). Rodin and Yuh-Long Hwang (1991) and Gong and Meguid (1992),
or by applying an inversion formula to a Cauchy-type singular integral equation (CSIE)
using results from Section 90 of Muskhelishvili’s book on singular integral equations (1992).

In addition to the analytical result the general CSIE will be solved numerically using
standard discretization techniques developed by Erdogan and co-workers [see Erdogan et
al. (1973) : Ming-Che Lu and Erdogan (1983)] as well as loakimidis (1976) and loakimidis
and Theocaris (1977, 1980). However. if the crack gets very close to the inclusion con-
vergence will become an issue. [t will then be necessary to apply special numerical measures,
e.g. polynomial extrapolation or the Lobatto Chebyshev scheme as proposed by Theocaris
and loakimidis (1977).

By comparison of both predictions for A). the range of validity of the analytical
formula can finally be assessed.

2. THI INTEGRAL EQUATION

Based on the original work by Erdogan ¢r «f. (1973, 1974) and Erdogan and Gupta
(1975) for cracks of finite size. and referring to an application of this work by Miiller and
Schmauder (1993). the CSIE for the semi-infinite crack shown in Fig. | can be written as
follows :

Al +rw,)

AV
/0 dr+ Ax.nfdr = — 0 -p(x). Rte<x <o, ey

.k".’_'\. JR =t

where /(1) denotes an unknown distribution of dislocations which is used to simulate the
crack. The coordinates x and ¢ characterize arbitrary points on the crack flanks. Mechanical
and thermal loads acting in the uncracked matrix at points x of the prospective crack are
contained in the expression p(v}. In particular. for thermal loads resulting from thermal
mismatch between the fiber and the matrix it can be shown that (Miiller and Schmauder,
1993) :

2 21l+x) R°
plx) = . Av*AT S -

A 2
[N 1+772ﬁ '\': ()

with
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([t +vazd —(l+v )yl - Ty, plane strain
Ay*AT = . (3)
[(xX -y (T =T, plane stress,

T and T, being the current and the reference temperature of the material, respectively.
The contraction k{x.7) denotes an integral kernel which can be separated into a
singular and into a regular part (Erdogan and Gupta. 1975):

Kvory =k (o) =hda . (4)
where
Foj oa+p s foal . AR
X, = < -+ 35 - R | ’
kot ) f=s | 1—px 1+f \':( \ )( ! )‘
A dvis(sT =R s (s =R
A SR R
L+ 1A CDN (= 0)¢ Rit(1—s)
and
- R/ 1 3R, |- \ R°
A,(,\-.n:/ , ( ‘)f( T I P (6)
L+ i N0 g ) A w22/ 2ix°
with
R I
v = in o=
\ 1
mn, +1)—(ks=1) iy - 1)y — (ks =1)
v = . o .= » R . (7
mn. + D)+ (v + 1) mitny =y +(rk-+1)

where the Dundurs’ parameters. 7 and fi. have been introduced. Note that A (x, r) becomes
singular if the crack tip ends at the fiber matrix interface.

In particular, for equal clastic but different thermal expansion coefficients.t eqns (1),
(2) and (4)—(7) can be combined and result in the following simple relation :

dro= 2rlzt )W - T, . R+o<xy<x. (8)
In order to solve the CSIEs (1) or (8) it is necessary to transform them into dimensionless
form, e.g. by using the tollowing formulac :

t=c+R(1I+7. ve=c+RUII+Y). 7€]0. 7). Te(0,x) (9)

which inserted into egns (1) and (2) lead 1o

oy o Tl +x,)
Ui+ | Rk hdr =
" ! v o _Hl

p(x) (10)

.

with

+ The elastically homogeneous case follows it = and f§ are equal to zero
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bl D)
_ 2, . 21 +x) 1
%) = Ay*AT - :
PO =T Y L +2-28 [1 + 24+5/R)?

(1)

Next, the distribution of dislocations. /(r). is separated into a singular and into a regular
part, F (1), as follows:

. . \ F(1
() = Finlr - (R+¢)) '-:»/(—z. (12)
\’(RI)
Introducing
F : 1
iy = W) = — (13)
R)Ay*AT Vi
the CSIE (10) can also be expressed as:
T h(w(d 2n(l+a 1
{ MO g R D di = — 0 - (14)
Jo I—% I+2=2F 1+ 3+¢/R)?

For numerical reasons it is advantageous. although not imperative, to eliminate the infinite
boundary in the integrals. This can also be achieved by suitable coordinate transformation.
The following transformation formulae stem from a more recent paper by Hutchinson et
al. (1987). They allow one to map the interval [R+¢. ) directly onto the dimensionless
set [— 1. +1]:

o 3
1:1;+R-I_I_. \':;:+R]-f_. L.xe[—1.+1] (15)
- ~X

which, inserted into eqns (1) and (2). result in:

Ay 1 7 2Rk (1) 71(1+'\| P(Y)
—di+ e e o df [
J | lﬁlei‘d[ Jo D0 =1 1-7 = 2/1. 1—x (16)
where
, 4‘ 201 +2) (lfx)
(%v) = AY*AT — —— - - S U— 17
P 1w, l+x—’/f[ +e/R(1—0)] a7

As in eqn (12). the distribution of dislocations. /(). is separated into a singular and into a
regular part, F(r). resulting in:

F(i)y [{1=1)
TR <) (18)
N\ R\' +[
By means of:
_ F(i7) _ 1
h(7) = ( o= (19)
RYAAT Vil=r)

or, alternatively :
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) F(n) ) =7
ha(7) = ( CLoud) = ( -_) (20)
(L RIAZAT( —7) VAT
the CSIE (16) can also be expressed as:
CHVh(Dw Ty T 2RA. Dy 2ntl - | —X )
- -.... L'i[_‘_ _ _ L [ - ~ /s T ""_‘ - l = 1-2~
J, i-x A (=01 =17 Lo o=20 D4e RO -9
(21)

Note that for / = | the CSIE s of the type n = | [¢f. for example. Erdogan et af. (1973) or
Golberg (1990)] which is the type of CSIEs considered n the papers by Erdogan and co-
workers (1974, 1975) and more recently by Miiller und Schmauder (1993) on cracks of
finite size in the vicinity of inclusions. However. for the choice / = 2 the CSIE is of the type
x = 0. Consequently, in each case it becomes necessary to apply the appropriate numerical
technique to obtain a solution. This will be discussed 1n more detail in Section 5.

For the time being 1t should be emphasized that an additional condition is required in
order to guarantee a unique solution of the integral cquation (21) for the choice i = 1: as
shown in eqn (2). the stresses around u thermally mismatched inclusion decrease as 1 v~
This will lead to a constant crack opening displacement at infinity (Kemmer, 1994). Thus
the gradient of vertical displacement. . n the horizontal direction. v. must vanish at infinity
which. in turn, 1s linked to the dislocation density. 7 (v). as follows :

{
)= o ey =0 - O0)). {
€\

2
[

In order to meet this requirement and referring to eqns (18) and (19). it is certainly sufficient
to impose the so-called Kutta condition [cf. Golberg (1990)] which in the terminology of
this paper reads :

o1y = 0. (23)

Moreover. note that the Kutta condition (23) has been used before, e.g. by Ming-Che Lu
and Erdogan (1983). to compute SIFs for an edge crack ; and indeed. this is no coincidence
since. suggestively speaking. the semi-infinite crack is an edge crack with its edge at infinity.

STRESS INTENSITY FACTORS

The SIF at the tip of a semi-infinite crack can be computed as tollows [see, for example,
Erdogan er «/. (1974): Erdogan and Gupta (1975): Erdogan (1983): Tang and Erdogan
(1984) : Miiller and Schmauder. (1993)]:

KiR—oy= " 2m tim v R . (24)

I~ Ky
Inserting egns (12} and (13) into this expression vields

A, 2 s A 5
K, AAT (nR). (25)

(). K, =

R
Alternatively. by using eqns (18) (20) the followmeg results are obtained

A, 5 Ao
X =0 M= K- 1) (26)
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4 A SELF-CONSISTENT FORMULA

An approximate analytical A-solution for the semi-infinite crack in the neighborhood
of a thermally mismatched inclusion (cf. Fig. 1) can be obtained by employing a self-
consistent procedure. It is first assumed that the distance between the crack tip and the
center of the inclusion is much larger than the radius of the inclusion. As a result, in the
vicinity of the crack tip. one will not see the detailed shape of the inclusion, and the
dissimilar inclusion can be treated as a spot with effective transformation strains. Similarly,
in the neighborhood of the inclusion. one will not see the location of the crack tip, and the
influence of the crack on the inclusion can approximately be represented by an effective
homogeneous loading. The relations among the effective loading, the stress intensity factor
and the effective transformation strains lead to a self-consistent loop : the effective loading
depends on the SIF at the crack tip. the SIF is determined by the transformation strains,
and the transtormation strains are related to the effective loading through an Eshelby-type
formula. Solving these loop relations yields [cf. Kachanov er al. (1990) for an analogous
treatment of crack-microcrack interaction. Rodin and Yuh-Long Hwang (1991) for the
case of inclusion-inclusion interaction and Gong and Meguid (1992) for crack interaction
with an elliptical hole] :

K, |+ V2
S — 27
1\'[ 1+72/j(l+( R)\z ( )

Although the self-consistent formula is strictly valid only when the crack tip is far from the
inclusion. it will be shown that it gives reasanable predictions even if the crack tip is located
in the close neighborhood of the inclusion.

In the self-consistent procedure the inclusion is treated as a transformed spot. On the
other hand. a moduli-perturbation approach presented by Gao (1991) can be used to
calculate the effect of the inclusion shape at a close distance, but it will be accurate only for
small differences between the elastic constants of the matrix and the inclusion. In principle,
a more superior solution can be constructed by asymptotically interpolating between the
self-consistent solution and the moduli-perturbation solution. This, however, is left to
future work.

The special case of a radial semi-infinite crack in front of a circular inclusion with the
sume elastic constants as the matrix can alternatively be obtained from the corresponding
exact analytical solution for the finite crack which was derived in a paper by Miiller (1990)
by solving the integral equation (8). This was achieved by using an inversion formula as
provided by Muskhelishvili (1992) in Section 90 of his book on singular integral equations.
The formula for the finite crack reads

T (28)

where L denotes the distance trom the center of the particle to the center of the crack and
2/1s the total crack length. Hence it tollows that :

/. o+ R
/:]+ ;o (29)

In the mit of a semi-infinite cruck (/ — » ) eqn (28) together with eqn (29) lead to eqn
{27), when specialized 1o the case x = i = ().

Note that the (z. f)-factor in the analvtical K-solution shown in eqn (27) also appears
on the right-hand side of the integral equations (14) or (21). This is by no means just a
coincidence. In fact. looking at the solution of the CSIE for the homogeneous case and by
interpreting and i1gnoring the kernel. A(x.7). in the original integral equation (21), as a
second order perturbation [cf. Golberg. (1990)]. vields:
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A 5 ) )
/ui)yfz) L B Bt o (30)
1—x V422 24 R(1 — 1))
This equation can now be solved analytically by means of the same techniques as used by
Miiller (1990). The result 1s eqn (27) which describes the case of slight elastic mismatch.
Thus it can be said that. within first order. the influence of elastic mismatch on the stress
intensity factor results Irom the stresses around the mismatched particle in the undamaged
matrix. i.e. p(x). The interaction between the crack and the particle, 1.e. the kernel. k(x. ?),
will only produce higher order terms.

SONUMERICAL SOLUTION OF THE INTEGRAL EQUATION

In order to solve the CSIEs (14) or (21) for arbitrary choices of Dundurs’ parameters,
z and . numerical procedures are needed. In the case of CSIEs with an infinite boundary
a possible method is the Radau-Chebyshev discretization scheme which is described in a
paper by loakimidis and Theocaris (1980) and which reads as follows:

> i ~ 201+ %) 1
,’V ”'/1(/.]‘!_ N +R/\(‘,I)' B 5 S ——
= 7=, \ Pta= 20 [1 +35, +¢ R)°
) li 2 n
I = . = COS
Sy, r=eos (\]
) I 2 n[k - 0.5] ,
v= 1In LNy = ws( ) ih=1.... N
« —\} X At
N Jhyfl—exp[—ci] )
" :2(10\p( 5 ( - ) i=1....N
T , e
A ;v\(l Iyl =1l.0.000 V-l.4, = v (31)

where ¢ is an arbitrary constant which. based on the results of the aforementioned paper
by Ioakimidis and Theocaris. was chosen to be 0.1 in the following computations.

Alternatively to eqns (31). the CSIE (14) could. in principle, be solved by using the
Gauss—Hermite integration technique [cf. loakimidis (1976). Section A9 or loakimidis and
Theocaris (1977)]. In this case the weights W are given by

C\p(’\A’,)Q‘\%I)!\ i
QNN 2N
o2 il N1 4= 1 (32)

W= 4

where the symbol 7., "~ stands for a certain Laguerre polynomial. 7; are the zeros of the
following Hermite polynomial:

. (y=0. i=2 N 1, =0 (33)

N
and the x, are the zeros of Kummer's confluent hvpergeometric function :
oo N+ vy =00 k=10 N (34)

For the case NV = 3 these formulae were evaluated in the two aforementioned references.t

F Note that the value 12541 i the table on p. 373 of the thesis work by Toakimidis (1976) is erroneous and
needs o be replaced by 14.29787 as quoted in the paper by Toakimidis and Theocaris (1977).
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However, it should be pointed out that choosing N = 5 is insufficient to obtain accurate
results for cracks in the close vicinity of a thermally mismatched inclusion and that the
Gauss-Hermite integration technique becomes unnecessarily cumbersome for higher values
of N. Therefore it will not be used in the following numerical analyses and the much simpler
Radau-Chebyshev method shown in eqns (31) will be applied instead.

Thus. the stress intensity factor of eqn (25) can be approximated by :

R 35
]\,[\ ~ {\ ‘-)h(r\) ( )

For the numerical study of the CSIE (21) of index » = 1, 1.e. for i = |, a Gauss—Chebyshev
discretization scheme can be used [cf. Erdogan er «/. (1973)] which leads to the following
set of linear equations:

) ! QRE(S,.T) ) 2rn(1 + 1—x,
S oway [y el | w0 1on
0 =% (1=3)0-1)| I+a—28 24/ R -5
Miy=0. W, =
W)y = UL ,-—N,.
_ 2i—1 ) o nk .
f, = cos <n 2’\/) i=1,....N. ¥ =cos <W> k=1,..., N—1. (36)

Note that it 1s possible to solve this set of linear equations only because of the Kutta
condition introduced in eqn (23).
Moreover. the SIF of eqn (26) can be approximated by :

K -
K = (v 2V (Ty). (37)

If convergence implied by the set of linear eqns (36) becomes an issue (as it will if the crack
tip 1s extremely close to the thermally and elastically mismatched fiber) it is advisable to
interpolate the discrete solution data /,(7), i=1,...,N, e.g. by using a polynomial
expression which can be evaluated at r = — 1. Using Lagrange’s interpolation formula [cf.
for example, Hildebrand (1974)] it can be shown that a possible polynomial 4~ '(7) of
order N—1 is given by the following equation :

I = e Y N s 38
' N .;(fff,)(‘l)'*' .

where T\(7) i1s the Nth Chebyshev polynomial of the first kind. If this polynomial is
evaluated at point / = — I the following compact approximate expression for A, (7) results:

|- _ 1=~
N [ . N -u
(=1 N’Z‘ ()= 1) \/(1_*_[-/)- (39

Alternatively, it is possible to use an algorithm which takes the crack tips, i.e. the end
points —1 and + 1. a priori into account. This algorithm is known as Lobatto-Chebyshev
discretization and it has been studied in great depth in the thesis work of loakimidis (1976,
Section I'3) and also. for example, in a paper by Theocaris and Ioakimidis (1977) :
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Miy =0, W = Nf““l‘ So=1. s =iy =05
- S , . B
[:COS(\H.\V*],). i=2... N, Fr =41 1y=—1
21y ,
T = cos (\HZ(N'_T)). k=1, . V-1, (40)

Turning now to the case of CSIEs of index » = (. 1.¢. for i = 2, the following Gauss—Jacobi
discretization scheme should be used [¢f. Erdogan er af. (1973)]:

_2(1 -7))
2N
i R 2k 1
I, =cos Kl\#l)‘ ,T,\:cos{nz.\,rﬂy). ihk=1.....N. (41)

Obviously, no further conditions are required for a solution of the resulting set of linear
equations and the stress intensity factor of eqn (26) reads

K e,
fltl‘“li;(l\y (42)

0

In analogy to eqn (38) it is possible 1o compute a Lagrangian interpolation polynomial
hY '(7) of order N —1 as follows

P Ty & iy (O =10
=" ! Y - N — ;)'_—. (43)
AN s ([ "i‘,)P'(\" l,)(rl)
where Py * ' and PV C () are the Nth Jacobi polvnomial of index (' —l:) and its
derivative, respectively. and h(7). i=1.. .. ¥ denotes discrete solution data. If this poly-
nomial is evaluated at point 7 = 1 the following approximate expression for /1,(7) can be
obtained :
hetiysin (7
17 )sin |7
I AR an -7,
-y =T S . — (44)
sin (rr ) ) v
2N+

6. RESULTS AND DISCUSSION

The sequence of three-dimensional plots in Fig. 2 presents SIFs for a semi-infinite
crack in front of a thermally mismatched, circular inclusion at different distances ¢/R for
the full range of Dundurs’ parameters possible [cf. Suga er «l. (1988)]. The SIFs were
computed both ways. using the analytical formula shown in eqn (27) as well as numerically
with eqn (37) by solving the set of lincar equations presented in eqns (36). The number of
integration points chosen for each calculation was A = 200 which, based on prior experience
[cf. Miiller and Schmauder. (1993)]. guarantees high accuracy (error « 1%) at least as long
as the crack tip is not closer to the inclusion than ¢ R = 0.0001. Note that the spikes in the
back of all plots are an artifact duc to the discreteness of the computed SIF data and to the
incapability of the plotting routine 1o interpolate in a direction not perpendicular either to
the « or to the f axis.
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Fig. 3 Analytically and numerically computed SIFs as a function of normalized distance for different
Dundurs parameters.

If the crack tip is comparatively far away from the inclusion (¢/R > 0.1), the analytical
and numerical procedures in general lead to very similar results for all choices of Dundurs’
parameters. However. for large positive values of z and § the analytical formula (27) tends
to overestimate the SIFs by 60%. This is. of course. no surprise since eqn (27) is only a first
order approximation with respect to the Dundurs’ parameters. Note that the same effect
does not occur at large negative values of x and 8, which must be attributed to the rapid
decrease of the thermal stress field if x —» — 1 [see eqn (2)].

If the crack tip moves closer and closer towards the inclusion (¢/R = 0.001 or 0.0001)
the discrepancies between the analytical and numerical predictions of SIFs become more
and more pronounced. In particular. the analytical formula (27) does not account for the
fact that negative Dundurs’ parameter x and positive Dundurs’ parametert § lead to SIFs
which increase rapidly if the crack tip approaches the inclusion. This behavior has been
observed before by Ming-Che Lu and Erdogan (1983) for cracks of finite size.

The two graphs presented in Fig. 3 allow the behavior of the SIFs at very small
distances to be examined more closely : they show K /K, as a function of ¢/ R on a logarithmic
scale from values as small as 10 ' up to 10'. For convenience only the first Dundurs’
parameter. %, has been changed while the second one, ff. has been chosen to be:

2

g (43)

which is an upper bound for many material combinations [cf. Suga er «l. (1988)]. As it was

+In this case the crack runs into an inclusion which is softer than the matrix.
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Fig. 4 A test tor numerical accuracy of the Gauss-Chebyshev procedure.

observed before. the SIF values predicted by the analytical formula (27) agree very well
with the numerical results at distances ¢ R > 0.1. However, for smaller ¢/R they quickly
converge to [cf. eqn (29)]:

,\‘R,”_ =2+ (46)

I
K,
The numerically computed SIFs behave quite differently for small values of ¢/ R. For positive
Dundurs’ parameters. the normalized SIFs run through a maximum between ¢/ R = 0.01
and &/R = 0.1 to decrease further if ¢/R — 0. For negative Dundurs’ parameters the nor-
malized SIFs increase with decreasing &/ R. However. if x = — 1.1 the SIFs are equal to zero
because of the vanishing thermal stress shown in eqn (2).
It should be noted that for = R < 10 * it is not sufficient to choose N = 200 in eqns
(36) in order to obtain a reliable result. This is illustrated in Fig. 4 which presents SIFs
normalized according to eqn (25) as a function of matrix size N for a special choice of
Dundurs™ parameters. » and . It is clearly visible that the SIFs will converge only weakly
ife/R =10 “or 10 ° The same remark holds for other conventional types of discretization,
such as the Radau -Chebyshev discretization [Fig. 3. eqns (31)] or the Gauss—Jacobi pro-
cedure [Fig. 6. eqns (41)]. To achieve faster convergence it is imperative to use either the
polynomial forms in eqns (38) or (43) and to extrapolate into the crack tip [eqns (39) or
(44). cf. Figs 7 and 8]. or to start with an algorithm which, a priori, takes the crack points
into account: eqns (40) and Fig. 9. The beneficial influence of such an approach is clearly
visible.

7 CONCLUSIONS AND OUTLOOK

The behavior of SIFs of a semi-infinite crack in front of a thermally and elastically
mismatched. circular inclusion has been studied for the full range of Dundurs’ parameters.
The SIFs were computed analytically using a formula, based on a self-consistent method
or on a CSIE inversion formula, as well as numerically using discretization methods
developed by Erdogan e a/. and Theocaris and loakimidis.

T In this case the inclusion degenerates mto a hole.
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Fig. 3. A test for numerical accuracy of the Radau--Chebyshev procedure.
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Fig. 6. A test for numerical accuracy of the Gauss -Jacobi procedure.

For small and medium values of Dundurs’ parameters the agreement between ana-
Ivtical and numerical procedures is excellent. However. for large, positive Dundurs’ par-
ameters the SIFs are overestimated by the analytical formula. This is not surprising since
the equation was derived as a first order approximation and is « priori valid only for a small
elastic mismatch.

Moreover, the vahdity of this formula 1s restricted to distances ¢'R > 0.1 where ¢
denotes the distance of the crack tip from the particle surface and R is the radius of the
inclusion. This may be sufficient for all practical purposes, however it should be noted that,
depending upon the Dundurs’ parameters, SIFs will either start to decrease or increase if
¢/R — 0. Note that the deviation between the SIF predicted by the self-consistent formula
and the corresponding numerical result is less than 7% if |x| < 0.6, f = z/4 and ¢/R > 0.2.
Moreover, note that for crack tips extremely close at the heterogeneity (¢ R < 107°) it is
imperative to extrapolate into the crack tips by polynomial interpolation of the discretized
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Fig. 7. A test for numertcal accuracy of the Gauss-Chebyshev procedure with polynomial extra-
polation.
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Fig. 8. A test for numerical accuracy of the Gauss—Jacobi procedure with polynomial extrapolation.

solution data or to use integration schemes which take the crack tips explicitly into account
(e.g. Lobatto—Chebyshev). Otherwise the numerical effort to obtain accurate results
becomes unbearably large: N > 1000.

Finally, it should be noted that the analytical as well as numerical techniques can both
be easily applied to other load and geometry configurations for the semi-infinite crack.
Papers dealing with the partially pressurized semi-infinite crack in front of a bimaterial wall
or a semi-infinite crack under arbitrary loading conditions. close to a bimaterial interface,
are in preparation.
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